题目内容

在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.
如题图,PA、PB与圆O相切,由于切线PA、PB互相垂直,所以四边形OAPB为正方形,OP=OA,这样就得到一个关于基本量a、c的齐次方程,从而求解出比值(e)的值.由已知条件,四边形OAPB为正方形,所以OP=OA,所以a,解得,即e=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网