题目内容

(本题满分12分)
如图,在四棱锥中,平面平面是等边三角形,已知

(Ⅰ)设上的一点,证明:平面平面
(Ⅱ)求四棱锥的体积.
(Ⅰ)由于.故. 又平面平面,平面平面平面,所以平面,又平面,故平面平面
(Ⅱ)

试题分析:(Ⅰ)由于
所以


又平面平面,平面平面
平面
所以平面
平面
故平面平面
(Ⅱ)解:过
由于平面平面
所以平面
因此为四棱锥的高,
是边长为4的等边三角形.
因此
在底面四边形中,
所以四边形是梯形,在中,斜边边上的高为
此即为梯形的高,
所以四边形的面积为

点评:立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网