题目内容
【题目】如图,三棱柱中,侧面为菱形,.
(1)求证:平面;
(2)若,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)根据菱形性质可知,结合可得,进而可证明,即,即可由线面垂直的判定定理证明平面;
(2)结合(1)可证明两两互相垂直.即以为坐标原点,的方向为轴正方向,为单位长度,建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可求得二面角的余弦值.
(1)证明:设,连接,如下图所示:
∵侧面为菱形,
∴,且为及的中点,
又,则为直角三角形,
,
又,
,即,
而为平面内的两条相交直线,
平面.
(2)
平面,
平面,
,即,
从而两两互相垂直.
以为坐标原点,的方向为轴正方向,为单位长度,建立如图的空间直角坐标系
,
为等边三角形,
,
,
,
设平面的法向量为,则,即,
∴可取,
设平面的法向量为,则.
同理可取
,
由图示可知二面角为锐二面角,
∴二面角的余弦值为.
练习册系列答案
相关题目