题目内容
【题目】已知函数,函数,其中,是的一个极值点,且.
(1)讨论的单调性
(2)求实数和a的值
(3)证明
【答案】(1)在区间单调递增;(2);(3)证明见解析.
【解析】
(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单调递增,可证明,取,可得,而,利用裂项相消法,结合放缩法可得结果.
(1)由已知可得函数的定义域为,且,
令,则有,由,可得,
可知当x变化时,的变化情况如下表:
1 | |||
- | 0 | + | |
极小值 |
,即,可得在区间单调递增;
(2)由已知可得函数的定义域为,且,
由已知得,即,①
由可得,,②
联立①②,消去a,可得,③
令,则,
由(1)知,,故,在区间单调递增,
注意到,所以方程③有唯一解,代入①,可得,
;
(3)证明:由(1)知在区间单调递增,
故当时,,,
可得在区间单调递增,
因此,当时,,即,亦即,
这时,故可得,取,
可得,而,
故
.
【题目】某地1~10岁男童年龄(单位:岁)与身高的中位数 (单位,如表所示:
/岁 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
76.5 | 88.5 | 96.8 | 104.1 | 111.3 | 117.7 | 124 | 130 | 135.4 | 140.2 |
对上表的数据作初步处理,得到下面的散点图及一些统计量的值.
112.45 | 82.50 | 3947.71 | 566.85 |
(1)求关于的线性回归方程(回归方程系数精确到0.01);
(2)某同学认为方程更适合作为关于的回归方程模型,他求得的回归方程是.经调查,该地11岁男童身高的中位数为,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?
(3)从6岁~10岁男童中每个年龄阶段各挑选一位男童参加表演(假设该年龄段身高的中位数就是该男童的身高).再从这5位男童中任挑选两人表演“二重唱”,则“二重唱”男童身高满足的概率是多少?
参考公式:,