题目内容

【题目】已知曲线处的切线方程为

(1)求的值;

(2)若对任意恒成立,求的取值范围.

【答案】(1),(2)

【解析】

试题分析:(1)由题意得,又(2)由(1)知对任意恒成立,对任意恒成立.又不等式整理可得,令, 在利用导数工具得 的取值范围是

试题解析: (1)由题意得,因曲线处的切线方程为

所以,得,即,又,从而...................4分

(2)由(1)知对任意恒成立,

所以,即,对任意恒成立,从而.........6分

又不等式整理可得,令

所以,令,............9分

时,,函数上单调递增,

同理,函数上单调递减,所以,............11分

综上所述,实数的取值范围是........................12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网