题目内容

(本题满分15分)已知椭圆的中心在原点,焦点在轴上,经过点,离心率

(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆的左、右顶点分别为,点为直线上任意一点(点不在轴上),
连结交椭圆于点,连结并延长交椭圆于点,试问:是否存在,使得成立,若存在,求出的值;若不存在,说明理由.
(Ⅰ);(Ⅱ)
(1)由离心率和椭圆上的一个点可建立关于a,b的两个方程,然后求解即可.
(II)先根据抛物线方程和椭圆方程解出A,然后设,则由l1与椭圆方程联立,借助韦达定理可求出,同理可求出,然后再根据,得到m关于k的函数关系式,由k>0,可确定m的取值范围.
(Ⅰ)的焦点为的焦点为
由条件得
所以抛物线的方程为

(Ⅱ)由,交点
,则

代入得:
由韦达定理得:
同理,将代入得:
由韦达定理得:
所以
因为,所以
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网