题目内容
已知正项数列
,其前
项和
满足
且
成等比数列,求数列
的通项![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751372216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751216381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751231192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751247220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751263586.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751341407.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751216381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121751372216.gif)
5n-3
解
∵10Sn=an2+5an+6, ① ∴10a1=a12+5a1+6,解之得a1=2或a1="3."
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)="0 "
∵an+an-1>0 , ∴an-an-1="5" (n≥2).
当a1=3时,a3=13,a15="73." a1, a3,a15不成等比数列∴a1≠3;
当a1=2时, a3="12," a15="72," 有 a32=a1a15 , ∴a1="2," ∴an=5n-3.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312175138776.gif)
又10Sn-1=an-12+5an-1+6(n≥2),②
由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)="0 "
∵an+an-1>0 , ∴an-an-1="5" (n≥2).
当a1=3时,a3=13,a15="73." a1, a3,a15不成等比数列∴a1≠3;
当a1=2时, a3="12," a15="72," 有 a32=a1a15 , ∴a1="2," ∴an=5n-3.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目