题目内容
数列{an}中,a2=2,an,an+1是方程x2-(2n+1)x+
=0的两个根,则数列{bn}的前n项和Sn=______.
1 |
bn |
∵an,an+1是方程x2-(2n+1)x+
=0的两个根,
∴an+an+1=2n+1,an•an+1=
,
∵a2=2,∴a1=2+1-2=1,
∴an-n=-[an+1-(n+1)],
∴an=n
∵an•an+1=
,
∴bn=
=
-
,
∴Sn=b1+b2+…+bn
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
1 |
bn |
∴an+an+1=2n+1,an•an+1=
1 |
bn |
∵a2=2,∴a1=2+1-2=1,
∴an-n=-[an+1-(n+1)],
∴an=n
∵an•an+1=
1 |
bn |
∴bn=
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Sn=b1+b2+…+bn
=(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
=
n |
n+1 |
故答案为:
n |
n+1 |
练习册系列答案
相关题目