题目内容
10.求证:${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{1}{n+1}$(2n+1-1)分析 根据组合数公式,$\frac{1}{k+1}$${C}_{n}^{k}$=${C}_{n+1}^{k+1}$•$\frac{1}{n+1}$,再根据二项式定理得到${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+…+${C}_{n+1}^{n+1}$=(1+1)(n+1)-${C}_{n+1}^{0}$=2n+1-1,继而得以证明.
解答 证明∵$\frac{1}{k+1}$${C}_{n}^{k}$=$\frac{n!}{k!(n-k)!}$•$\frac{1}{k+1}$=$\frac{n!}{(n-k)!(k+1)!}$=$\frac{(n+1)!}{(n+1-k-1)!(k+1)!}$•$\frac{1}{n+1}$=${C}_{n+1}^{k+1}$•$\frac{1}{n+1}$
∴${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{1}{n+1}$${C}_{n+1}^{1}$+$\frac{1}{n+1}$${C}_{n+1}^{2}$+…+$\frac{1}{n+1}$${C}_{n+1}^{n+1}$=$\frac{1}{n+1}$(${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+…+${C}_{n+1}^{n+1}$),
∵(1+1)n=${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$,
∴${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+…+${C}_{n+1}^{n+1}$=(1+1)(n+1)-${C}_{n+1}^{0}$=2n+1-1,
∴${C}_{n}^{0}$+$\frac{1}{2}$${C}_{n}^{1}$+$\frac{1}{3}$${C}_{n}^{2}$+…+$\frac{1}{n+1}$${C}_{n}^{n}$=$\frac{1}{n+1}$(2n+1-1),
问题得以证明.
点评 本题考查了组合数公式,以及二项式定理,培养了学生的运算能力,属于中档题.
A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
A. | i>10 | B. | i≥10 | C. | i≥9 | D. | i>9 |
A. | 5 | B. | 10 | C. | $2\sqrt{6}$ | D. | $4\sqrt{6}$ |