题目内容

2.设a,b,c,x,y,z是正数,且a2+b2+c2=1,x2+y2+z2=4,ax+by+cz=2,则$\frac{a+b+c}{x+y+z}$(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 根据所给“积和结构”条件,利用柯西不等式求解,注意柯西不等式中等号成立的条件即可.

解答 解:由柯西不等式得,(a2+b2+c2)($\frac{1}{4}$x2+$\frac{1}{4}$y2+$\frac{1}{4}$z2)≥($\frac{1}{2}$ax+$\frac{1}{2}$by+$\frac{1}{2}$cz)2
当且仅当$\frac{a}{\frac{1}{2}x}=\frac{b}{\frac{1}{2}y}=\frac{c}{\frac{1}{2}z}$时等号成立
∵a2+b2+c2=1,x2+y2+z2=4,ax+by+cz=2,
∴(a2+b2+c2)($\frac{1}{4}$x2+$\frac{1}{4}$y2+$\frac{1}{4}$z2)≥($\frac{1}{2}$ax+$\frac{1}{2}$by+$\frac{1}{2}$cz)2中等号成立,
∴一定有:$\frac{a}{\frac{1}{2}x}=\frac{b}{\frac{1}{2}y}=\frac{c}{\frac{1}{2}z}$,
∴$\frac{a+b+c}{x+y+z}$=$\frac{1}{2}$.
故选:C

点评 柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网