题目内容
20.已知正方形ABCD的边长为8,空间有一点M(不在平面ABCD内)满足|MA|+|MB|=10,则三棱锥M-ABC的体积的最大值是32.分析 由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$,此时三棱锥的高最大,即可得出.
解答 解:由已知点M(不在平面ABCD内)满足|MA|+|MB|=10,可得点M在以A,B为焦点的椭球上(去掉在平面ABCD内的点),球心为O.
当MO⊥平面ABCD时,MO=$\sqrt{A{M}^{2}-A{O}^{2}}$=3,此时三棱锥的高最大,
因此三棱锥A-BCM的体积的最大值=$\frac{1}{3}•MO•{S}_{△ABC}$=$\frac{1}{3}×3×\frac{1}{2}×{8}^{2}$=32.
故答案为:32.
点评 本题考查了椭球的定义及其性质、线面面面垂直的性质、三棱锥的体积计算公式、勾股定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.已知角α,β均为锐角,且tanα=$\frac{4}{3},tan(α-β)=-\frac{1}{3}$,则tanβ=( )
A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{13}{9}$ | D. | $\frac{9}{13}$ |
8.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x}(x>0)}\\{{x}^{3}+4(x≤0)}\end{array}\right.$,若关于x的方程f(x2)=a(a∈R)有四个不同的实根,则a的取值范围是( )
A. | (4,+∞) | B. | [4,+∞) | C. | (-∞,4) | D. | (4,7) |
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C于A、B两点,若△AF1B的周长为12,则C的方程为( )
A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{3}$+y2=1 | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1 |