题目内容
已知椭圆
的离心率为
,
为椭圆的左右焦点,
;
分别为椭圆的长轴和短轴的端点(如图) .若四边形
的面积为
.
(Ⅰ)求椭圆
的方程.
(Ⅱ)抛物线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847297318.png)
的焦点与椭圆
的右焦点重合,过点
任意作一条直线
,交抛物线
于
两点. 证明:以
为直径的所有圆是否过抛物线
上一定点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028480144458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028467201162.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846735337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846751441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846860452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846876453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846891569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202846907423.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847000313.png)
(Ⅱ)抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847297318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847531861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847000313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847562623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847749280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847297318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847765425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847905396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847297318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028480144458.png)
解:(1)根据题意设椭圆方程为
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028483732971.png)
由已知
,
,则
,又
,
,
,
所求的椭圆方程为
. ….…6分
(2) 根据题意知抛物线方程为:
,设满足题意的点为
,
设
其
中
,因为
是直径,所以
,
,
整理为:
…… ……(※)
同时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849762169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028498551116.png)
整理为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849762169.png)
代入点
得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850417817.png)
即
有:
,将其代入(※)式中整理为:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028507911025.png)
显然
时上式恒成立, 进而算得
,所以
为定点
,从而说明满足题意的存在为
. 当直线
垂直于
轴时,易求得以
为直径的圆为
,同样可检验其经过
. ….…15分
方法二:(2)设
设直线AB的方程为
,与
联立消
有
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851540970.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851758883.png)
以AB为直径的圆的方程为
,即
,代入,有
,
即
,
令
. ……15分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028481391107.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028483732971.png)
由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848404438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848514750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848560678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028487631490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848779334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848826633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848841201.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848857716.png)
(2) 根据题意知抛物线方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848872526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848904591.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202848997934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849044172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849106578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847905396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849200499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849216603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849231256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028494811058.png)
整理为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028496681003.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849762975.png)
同时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849762169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028498551116.png)
整理为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849762169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850214823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847562623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850417817.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202849044172.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850573808.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028507911025.png)
显然
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850807412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850822337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850869289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850869480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850885533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847905396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850916266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202847905396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851025798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850885533.png)
方法二:(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851181862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851306754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851322525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202850916266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851415983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851540970.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028516801360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851758883.png)
以AB为直径的圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823202851868943.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028519141286.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028519612075.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028519921610.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232028521022763.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目