题目内容
【题目】若命题p:曲线 =1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .
【答案】(﹣∞,2]∪[3,6)
【解析】解:当p为真命题时,(a﹣2)(6﹣a)>0,解之得2<a<6.当q为真命题时,4﹣a>1,即a<3.
由p∨q为真命题,p∧q为假命题知p、q一真一假.
当p真q假时,3≤a<6.当p假q真时,a≤2.
因此实数a的取值范围是(﹣∞,2]∪[3,6).
所以答案是:(﹣∞,2]∪[3,6).
【考点精析】通过灵活运用复合命题的真假,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真即可以解答此题.
练习册系列答案
相关题目