题目内容
【题目】已知集合A={x|3≤3x≤27},B={x|log2x>1}. (Ⅰ)求A∩B,A∪B;
(Ⅱ)已知非空集合C={x|1<x≤a},若CA,求实数a的取值范围.
【答案】解:(Ⅰ)集合A={x|3≤3x≤27}={x|1≤x≤3} B={x|log2x>1}={x|x>2}
∴A∩B={x|2<x≤3}
A∪B={x|x≥1}.
(Ⅱ)∵非空集合C={x|1<x≤a},∴a>1,
又CA={x|1≤x≤3},所以a≤3.
综上得a的取值范围是1<a≤3.
【解析】(Ⅰ)先分别求出集合A,B,由此能求出A∩B,A∪B.(Ⅱ)由非空集合C={x|1<x≤a},得a>1,再由CA={x|1≤x≤3},能求出a的取值范围.
【考点精析】掌握集合的并集运算和集合的交集运算是解答本题的根本,需要知道并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
练习册系列答案
相关题目