题目内容
11.设函数f(x)=2+$\frac{2mx+sinx+mxcosx}{2+cosx}$,若f(x)在[-n,n]上的值域为[a,b],其中a,b,m,n∈R,且n>0,则a+b=( )A. | 0 | B. | 2 | C. | 4 | D. | 2m |
分析 由于f(x)=2+mx+$\frac{sinx}{2+cosx}$,令g(x)=mx+$\frac{sinx}{2+cosx}$,根据奇函数的对称性即可求解.
解答 解:f(x)=2+$\frac{2mx+sinx+mxcosx}{2+cosx}$=2+$\frac{mx(2+cosx)}{2+cosx}$$+\frac{sinx}{2+cosx}$=2+mx+$\frac{sinx}{2+cosx}$,
令g(x)=mx+$\frac{sinx}{2+cosx}$,
则g(-x)=-mx-$\frac{sinx}{2+cosx}$=-g(x),即g(x)为奇函数,
∴g(x)在[-n,n]上的最大值与最小值之和为0,
∵f(x)=g(x)+2,
∴a+b=4.
故选C
点评 本题主要考查了奇函数在对称区间上最值互为相反数即最值之和为0的性质的应用,其中构造函数g(x)是求解本题的关键
练习册系列答案
相关题目
1.定义在R上的函数f(x)满足:f(x+1)=-f(x),当x∈(0,1]时,f(x)=x+1,则f(3.5)的值是( )
A. | 0.5 | B. | -1.5 | C. | 2.5 | D. | -2.5 |
19.设a、b、c分别是△ABC的三边长,且a=4,b=5,c=7,则△ABC是( )
A. | 直角三角形 | B. | 锐角三角形 | C. | 钝角三角形 | D. | 无法确定 |
20.经过坐标原点,且与圆(x-3)2+(y+1)2=2相切于第四象限的直线方程是( )
A. | x-y=0 | B. | x+y=0 | C. | x-7y=0 | D. | x+7y=0 |
1.设z1、z2∈C,则“z1、z2均为实数”是“z1-z2是实数”的( )
A. | 充分非必要条件 | B. | 必要非充分条件 | ||
C. | 充要条件 | D. | 既非充分又非必要条件 |