题目内容
2.解关于x的不等式$\frac{{x}^{2}-x+3}{{x}^{2}+ax}$>0(a≠0)分析 根据配方法化简分母并由二次函数的性质判断出符号,将$\frac{{x}^{2}-x+3}{{x}^{2}+ax}>0$等价转化后,对a进行分类讨论,分别由一元二次不等式的解法求出不等式的解集,要用集合或区间的形式表示.
解答 解:因为${x}^{2}-x+1={(x-\frac{1}{2})}^{2}+\frac{3}{4}>0$,
所以$\frac{{x}^{2}-x+3}{{x}^{2}+ax}>0$化为x2+ax>0,则x(x+a)>0,
当a>0时,由x(x+a)>0得,x>0或x<-a;
当a<0时,由x(x+a)>0得,x<0或x>-a,
综上可得,不等式的解集是:当a>0时,{x|x>0或x<-a};
当a<0时,{x|x<0或x>-a}.
点评 本题考查分式和一元二次不等式的解法,以及一元二次函数的性质,考查化简能力、分类讨论和转化思想.
练习册系列答案
相关题目
13.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值和最小值分别为( )
A. | $\frac{{\sqrt{2}}}{4},\frac{1}{2}$ | B. | $\sqrt{2},\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2},\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2},\frac{1}{2}$ |
11.2015年高中学业水平考试之后,为了调查同学们的考试成绩,随机抽查了某高中的高二一班的10名同学的语文、数学、英语成绩,已知其考试等级分为A,B,C,现在对他们的成绩进行量化:A级记为2分,B级记为1分,C级记为0分,用(x,y,z)表示每位同学的语文、数学、英语的得分情况,再用综合指标w=x+y+z的值评定该同学的得分等级.若w≥4,则得分等级为一级;若2≤w≤3.则得分等级为二级;若0≤w≤1,则得分等级为三级.得到如下结果:
(Ⅰ)在这10名同学中任取两人,求这两位同学英语得分相同的概率;
(Ⅱ)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.
人员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) | (1,2,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅱ)从得分等级是一级的同学中任取一人,其综合指标为a,从得分等级不是一级的同学中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.