题目内容
一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1;
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2;
②记5次之内(含5次)取到红球的个数为
,求随机变量
的分布列及数学期望.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1;
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2;
②记5次之内(含5次)取到红球的个数为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
(1)
(2) ①
②![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128475482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128444442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128459399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128475482.png)
试题分析:(1)从袋中不放回地取球,连续取4次,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128491391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128506593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128537891.png)
(2) 从袋中有放回地取球,每次取到红球的概率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128569651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128569729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128584297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128584297.png)
①求恰好取5次停止的概率P2;说明前四次有两次发生,第五次一定发生;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441286151299.png)
②记5次之内(含5次)取到红球的个数为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128662611.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128584297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441286781058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128725417.png)
试题解析:
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441287401056.png)
(2)①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441287561502.png)
②随机变量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128771514.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128584297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441286781058.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441288181509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441288341594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441288491821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441288651332.png)
随机变量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![]() | 0 | 1 | 2 | 3 |
![]() | ![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044128413320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441289901707.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目