题目内容
(本小题满分9分)一个袋子中有3个红球和2个黄球,5个球除颜色外完全相同,甲、乙两人先后不放回地从中各取1个球.规定:若两人取得的球的颜色相同则甲获胜,否则乙获胜.
(1) 求两个人都取到黄球的概率;
(2) 计算甲获胜的概率.
(1) 求两个人都取到黄球的概率;
(2) 计算甲获胜的概率.
(1)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955336333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955352370.png)
试题分析:(1) 设3个红球编号为1、2、3;两个黄球编号为4、5,分别列出甲乙两人先后不放回地各取一个球的所有基本事件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955368297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955383494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955399488.png)
(2)甲获胜指的是两人取到相同颜色的球,即两个红的或是两个黄的.看其中有几个基本事件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955430337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955446567.png)
解:设3个红球编号为1、2、3;两个黄球编号为4、5.则一切可能结果组成的基本事件有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10个。 (2分)
两个人都取得黄球的事件有(4,5)共1个。因此两个人都取得黄球概率为P=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955336333.png)
(6分(注意格式,要设事件,要作答))
(2)两个人取得相同颜色球的事件有(1,2)、(1,3)、(2,3)、(4,5)共4个
故甲获胜的概率为P=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050955477571.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目