题目内容

【题目】设a,b是两个非零向量.

A.若|a+b|=|a|-|b|,则ab

B.若ab,则|a+b|=|a|-|b|

C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λb

D.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|

【答案】C

【解析】利用排除法可得选项C是正确的,|a+b|=|a|-|b|,则a,b共线,即存在实

λ,使得a=λb.如选项A:|a+b|=|a|-|b|时,a,b可为异向的共线向量;选项B:若ab,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网