题目内容

【题目】已知函数f(x)是定义在(﹣∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(﹣2011)+f(2012)的值为(
A.﹣1
B.﹣2
C.2
D.1

【答案】A
【解析】解:∵对于任意的实数x≥0,都有f(x+2)=f(x), ∴函数在[0,+∞)内的一个周期T=2,
∵函数f(x)是定义在R上的奇函数,
所以f(﹣2011)+f(2012)=﹣f(2011)+f(2012)
=﹣f(2011)+f(2012)
=﹣f(1)+f(0)
又当x∈[0,2)时,f(x)=log2(x+1),
∴f(1)=log2(1+1)=1
f(0)log2(0+1)=0
因此f(﹣2011)+f(2012)
=﹣f(1)+f(0)
=﹣1+0
=﹣1.
故选A.
【考点精析】掌握函数奇偶性的性质和函数的值是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网