题目内容

【题目】在直角坐标系xOy中,已知直线l过点P22.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρρcos2θ4cosθ0.

1)求C的直角坐标方程;

2)若lC交于AB两点,求的最大值.

【答案】1;(2

【解析】

1)把曲线的极坐标方程两边同时乘以,结合,即可求出曲线的极坐标方程;

2)由已知直接写出直线的参数方程,把直线的参数方程代入曲线的极坐标方程,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.

1)曲线的极坐标方程为,两边同时乘以,得,把互化公式代入可得:,即,所以C的直角坐标方程为y24x.

2)设直线的倾斜角为,可得参数方程为:为参数),代入抛物线方程可得:

当且仅当时,等号成立,

的最大值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网