题目内容
【题目】在直角坐标系xOy中,已知直线l过点P(2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐标方程;
(2)若l与C交于A,B两点,求的最大值.
【答案】(1);(2)
【解析】
(1)把曲线的极坐标方程两边同时乘以,结合,,,即可求出曲线的极坐标方程;
(2)由已知直接写出直线的参数方程,把直线的参数方程代入曲线的极坐标方程,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.
(1)曲线的极坐标方程为,两边同时乘以,得,把互化公式代入可得:,即,所以C的直角坐标方程为y2=4x.
(2)设直线的倾斜角为,可得参数方程为:(为参数),代入抛物线方程可得:,
则,,
∴,
当且仅当时,等号成立,
的最大值为.
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
1.63 | 37.8 | 0.89 | 5.15 | 0.92 | 18.40 |
表中.
(1)根据散点图判断,与哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程.
(3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.