题目内容
【题目】已知函数,其中为自然对数的底数.
(Ⅰ)讨论函数的单调性及极值;
(Ⅱ)若不等式在内恒成立,求证:.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)函数求导得,讨论和演技单调性及极值即可;
(2)当时,在内单调递增,可知在内不恒成立,当时, ,即,所以.令,进而通过求导即可得最值.
试题解析:
(1)由题意得.
当,即时,,在内单调递增,没有极值.
当,即,
令,得,
当时,,单调递减;
当时,,单调递增,
故当时,取得最小值,无极大值.
综上所述,当时,在内单调递增,没有极值;
当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.
(2)由(1),知当时,在内单调递增,
当时,成立.
当时,令为和中较小的数,
所以,且.
则,.
所以,
与恒成立矛盾,应舍去.
当时, ,
即,
所以.
令,
则.
令,得,
令,得,
故在区间内单调递增,
在区间内单调递减.
故,
即当时,.
所以.
所以.
而,
所以.
练习册系列答案
相关题目