题目内容
【题目】已知函数f(x)=log 的图象关于原点对称,其中a为常数.
(1)求a的值;
(2)当x∈(1,+∞)时,f(x)+log (x+1)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=log (x+k)在[2,3]上有解,求k的取值范围.
【答案】
(1)
解:∵函数f(x)的图象关于原点对称,
∴函数f(x)为奇函数,
∴f(﹣x)=﹣f(x),
即log =﹣log = log ,
解得:a=﹣1或a=1(舍)
(2)
解:f(x)+ log (x﹣1)= log + log (x﹣1)= log (1+x),
x>1时,log (1+x)<﹣1,
∵x∈(1,+∞)时,f(x)+ log (x﹣1)<m恒成立,
∴m≥﹣1;
(3)
解:由(1)得:f(x)= log (x+k),
即log = log (x+k),
即 =x+k,即k= ﹣x+1在[2,3]上有解,
g(x)= ﹣x+1在[2,3]上递减,
g(x)的值域是[﹣1,1],
∴k∈[﹣1,1]
【解析】(1)根据函数的奇偶性,求出a的值即可;(2)求出f(x)+ log (x﹣1)= log (1+x),根据函数的单调性求出m的范围即可;(3)问题转化为k= ﹣x+1在[2,3]上有解,即g(x)= ﹣x+1在[2,3]上递减,根据函数的单调性求出g(x)的值域,从而求出k的范围即可.
练习册系列答案
相关题目