题目内容
1.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是120.分析 根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.
解答 解:分2步进行分析:
1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,
2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,
分2种情况讨论:
①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,
排好后,最后1个小品类节目放在2端,有2种情况,
此时同类节目不相邻的排法种数是6×4×2=48种;
②将中间2个空位安排2个小品类节目,有A22=2种情况,
排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,
此时同类节目不相邻的排法种数是6×2×6=72种;
则同类节目不相邻的排法种数是48+72=120,
故答案为:120.
点评 本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.
练习册系列答案
相关题目
9.已知△ABC中,∠A=$\frac{π}{6}$,AB=3$\sqrt{3}$,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为( )
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
16.已知13+23+…+n3=(1+2+…+n)2,运行如图所示的程序框图,则输出的i的值为( )
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
10.一袋中有5个白球、3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于( )
A. | C${\;}_{12}^{10}$($\frac{3}{8}$)10($\frac{5}{8}$)2 | B. | C${\;}_{12}^{9}$($\frac{3}{8}$)9($\frac{5}{8}$)2($\frac{3}{8}$) | C. | C${\;}_{11}^{9}$($\frac{5}{8}$)9($\frac{3}{8}$)2 | D. | C${\;}_{11}^{9}$($\frac{3}{8}$)10($\frac{5}{8}$)2 |