ÌâÄ¿ÄÚÈÝ
12£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®£¨¢ñ£©ÇóÇúÏßCµÄƽÃæÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚµãM£¬N£¬ÈôµãPµÄ×ø±êΪ£¨1£¬0£©£¬ÇóµãPÓëMNÖеãµÄ¾àÀ룮
·ÖÎö £¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ${¦Ñ}^{2}=2\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñsin¦È+¦Ñcos¦È£©£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö£»
£¨II£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃ${t}^{2}-\sqrt{2}t$-1=0£¬ÓÉtµÄ¼¸ºÎÒâÒ壬¿ÉµÃµãPÓëMNÖеãµÄ¾àÀëΪ$|\frac{{t}_{1}+{t}_{2}}{2}|$£®
½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ${¦Ñ}^{2}=2\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñsin¦È+¦Ñcos¦È£©£¬
¿ÉµÃÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=2y+2x£¬Å䷽Ϊ£¨x-1£©2+£¨y-1£©2=2£®
£¨¢ò£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ$£¨\frac{\sqrt{2}}{2}t£©^{2}+£¨\frac{\sqrt{2}}{2}t-1£©^{2}$=2£¬¼´${t}^{2}-\sqrt{2}t$-1=0£¬
ÓÉÓÚ¡÷=6£¾0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½Êµ¸ù£¬Ôò${t_1}+{t_2}=\sqrt{2}$£®
¡ßÖ±Ïßl¹ýµãP£¨1£¬0£©£¬
¡àÓÉtµÄ¼¸ºÎÒâÒ壬¿ÉµÃµãPÓëMNÖеãµÄ¾àÀëΪ$|{\frac{{{t_1}+{t_2}}}{2}}|=\frac{{\sqrt{2}}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | £¨-¡Þ£¬1]¡È[6£¬+¡Þ£© | B£® | £¨-¡Þ£¬1£©¡È[6£¬+¡Þ£© | C£® | £¨-3£¬1£©¡È£¨2£¬+¡Þ£© | D£® | [-3£¬1£©¡È£¨2£¬+¡Þ£© |