题目内容

【题目】已知曲线C: + =1,直线l: (t为参数)
(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

【答案】
(1)解:对于曲线C: + =1,可令x=2cosθ、y=3sinθ,

故曲线C的参数方程为 ,(θ为参数).

对于直线l:

由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;


(2)解:设曲线C上任意一点P(2cosθ,3sinθ).

P到直线l的距离为

,其中α为锐角.

当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为

当sin(θ+α)=1时,|PA|取得最小值,最小值为


【解析】(1)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(2)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网