题目内容
14.如果一个实数数列{an}满足条件:$a_{n+1}^2-{a_n}=d$(d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1,若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,$-\sqrt{5}$可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为-1,则这一数列的伪公差可以是$\frac{{\sqrt{5}-3}}{2}$.其中正确的结论是③④.分析 通过取a1=$\frac{1}{2}$、d=-$\frac{1}{4}$、an>0易知①不正确;通过an+1=±$\sqrt{{a}_{n}+d}$可知②不正确;不妨取伪公差d=0即得这一数列是周期数列故③正确;通过代入计算可知④正确;通过首项及平方≥0即得⑤不正确.
解答 解:①当a1=$\frac{1}{2}$、d=-$\frac{1}{4}$、an>0时,
依题意,an=$\frac{1}{2}$,故不正确;
②当d>0,a1>0时,
∵an+1=±$\sqrt{{a}_{n}+d}$,
∴这一数列不是单调递增数列,故不正确;
③易知当伪公差d=0、an=1时,这一数列是周期数列,故正确;
④∵a1=1,d=3,
∴a2=±$\sqrt{{a}_{1}+d}$=±2,
∴当a2=2时a3=±$\sqrt{{a}_{2}+d}$$±\sqrt{5}$,故正确;
⑤∵a1=0,a3=-1,
∴${{a}_{2}}^{2}$=a1+d=d,
∴d≥0,
而$\frac{{\sqrt{5}-3}}{2}$<0,故不正确;
综上所述:③④正确,①②⑤不正确,
故答案为:③④.
点评 本题考查考查数列的性质,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
7.已知随机变量 ξ 的分布列为P(ξ=k)=$\frac{1}{{2}^{k}}$( k=1,2,…),则 P(2<x≤4)为( )
A. | $\frac{3}{16}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{16}$ | D. | $\frac{5}{16}$ |
6.已知{an}为等差数列,若a1+a9=$\frac{π}{3}$,则cos(a3+a7)的值为( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
19.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取100名学生,其中男生喜欢数学课程的20人,不喜欢数学课程的30人;女生喜欢数学课程的10人,不喜欢数学课程的40人.
(Ⅰ)根据以上数据作2×2列联表;(答案填写在答题纸上)
(Ⅱ)根据以上数据,能否有95%的把握认为“高中生的性别与是否喜欢数学课程有关”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+b)(b+d)}$.
(Ⅰ)根据以上数据作2×2列联表;(答案填写在答题纸上)
喜欢数学课程 | 不喜欢数学课程 | 合计 | |
男生 | |||
女生 | |||
合计 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
1.设x3+ax+b=0,其中a,b均为实数,下列条件中,能使得该三次方程仅有一个实根的个数是( )
①a=-3,b=-3
②a=-3,b=2
③a=-3,b>2
④a=0,b=2
⑤a=1,b=2.
①a=-3,b=-3
②a=-3,b=2
③a=-3,b>2
④a=0,b=2
⑤a=1,b=2.
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
2.从某校高一年级随机抽取n名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:
(I)求n的值;
(Ⅱ)若a=10,补全表中数据,并绘制频率分布直方图;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替.若上述数据的平均值为7.84,求a,b的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率.
组号 | 分组 | 频数 | 频率 |
1 | [5,6) | 2 | 0.04 |
2 | [6,7) | 0.20 | |
3 | [7,8) | a | |
4 | [8,9) | b | |
5[来源:Zxxk.Com] | [9,10) | 0.16 |
(Ⅱ)若a=10,补全表中数据,并绘制频率分布直方图;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替.若上述数据的平均值为7.84,求a,b的值,并由此估计该校高一学生的日平均睡眠时间不少于8小时的概率.