题目内容

【题目】已知函数g(x)= 是奇函数,f(x)=log4(4x+1)﹣mx是偶函数.
(1)求m+n的值;
(2)设h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]对任意x≥1恒成立,求实数a的取值范围.

【答案】
(1)解:由于g(x)为奇函数,且定义域为R,

∴g(0)=0,即 =0,∴n=﹣1,

∵f(x)=log4(4x+1)﹣mx

∴f(﹣x)=log4(4x+1)﹣(﹣m+1)x,

∵f(x)是偶函数,

∴f(﹣x)=f(x),得﹣mx=﹣(﹣m+1)x恒成立,故m=

综上所述,可得m+n=﹣


(2)解:∵h(x)=f(x)+ x=log4(4x+1),

∴h[log4(2a+1)]=log4(2a+2),

又∵g(x)=2x﹣2x在区间[1,+∞)上是增函数,

∴当x≥1时,g(x)min=

由题意,得 ,∴

因此,实数a的取值范围是:{a|﹣ }


【解析】(1)由g(x)为定义在R上的奇函数,得g(0)=0,解得n=﹣1;再根据偶函数满足f(﹣x)=f(x),比较系数可得m= ,由此即可得到m+n的值.(2)由(1)得h(x)=log4(4x+1),易得h[log4(2a+1)]=log4(2a+2).而定义在R上的增函数g(x)在x≥1时的最小值为g(1)= ,从而不等式转化成 >log4(2a+2),由此再结合真数必须大于0,不难解出实数a的取值范围.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网