题目内容
【题目】已知函数,函数.
⑴若的定义域为,求实数的取值范围;
⑵当,求函数的最小值;
⑶是否存在实数,使得函数的定义域为,值域为?若存在,求出的值;若不存在,则说明理由.
【答案】(1);(2);(3),
【解析】
(1)因为的定义域为,所以对任意实数恒成立.当m=0时显然不满足,当m不为0时,内层函数为二次函数,需要开口向上且判别式小于0,即可满足要求.
(2)x∈[-1,1]时,求函数是一个复合函数,复合函数的最值一般分两步来求,第一步求内层函数的值域,第二步研究外层函数在内层函数值域上的最值,本题内层函数的值域是确定的一个集合,而外层函数是一个系数有变量的二次函数,故本题是一个区间定轴动的问题.
(3) 根据函数的单调性,列出方程组 转化为:即m、n是方程的两非负实根,且m<n.即可得解.
(1)由题意对任意实数恒成立,
∵时显然不满足
∴
∴
(2)令,则
∴
(3)∵
∴ ∴
∴ 函数在[,]单调递增,
∴ 又∵
∴ ,
练习册系列答案
相关题目
【题目】某学校900名学生在一次百米测试中,成绩全部介于13秒与18 秒之间,利用分层抽样的方法抽取其中若干个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),…,第五组[17,18],有关数据见下表:
各组组员数 | 各组抽取人数 | |
[13,14) | 54 | a |
[14,15) | b | 8 |
[15,16) | 342 | 19 |
[16,17) | 288 | c |
[17,18] | d |
(1)求a,b,c,d的值;
(2)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率。