题目内容
如图所示,在四棱锥
中,底面
为矩形,
平面
,点
在线段
上,
平面
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341339795609.jpg)
(1)证明:
平面
.;
(2)若
,求三棱锥
的体积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133823597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133839534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133870394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133839534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133886322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133917371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133932396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133948463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341339795609.jpg)
(1)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133995405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134026467.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134042653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134073539.png)
(1)见解析(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134088484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134088484.png)
试题分析:(1)要证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133995405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134026467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134260385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134026467.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133870394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133839534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134541533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133932396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133948463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134588526.png)
可证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133995405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134026467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133839534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134666298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134681395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133995405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134026467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134728569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133839534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133932396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034133948463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134806558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134822525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134837533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134837533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134868869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134073539.png)
试题解析:(1)∵PA⊥平面ABCD,
∴PA⊥BD.
∵PC⊥平面BDE,
∴PC⊥BD.
又PA∩PC=P,∴BD⊥平面PAC. 6分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341349155699.jpg)
(2)如图,设AC与BD的交点为O,连结OE.
∵PC⊥平面BDE,∴PC⊥OE.
由(1)知,BD⊥平面PAC,∴BD⊥AC,
由题设条件知,四边形ABCD为正方形.
由AD=2,得AC=BD=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134931350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134931350.png)
在Rt△PAC中,PC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134978678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134993835.png)
易知Rt△PAC∽Rt△OEC,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135009573.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135024576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135024530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135040457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135056632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135087462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135087462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135118377.png)
∴VE-BCD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135118330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135118330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135149343.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135165341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135087462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034135118377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134931350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034134088484.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目