题目内容
【题目】经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.
【答案】解:(Ⅰ)女生打分的平均分为:
= (68+69+75+76+70+79+78+82+87+96)=78,
男生打分的平均分为:
= (55+53+62+65+71+70+73+74+86+81)=69.
从茎叶图来看,女生打分相对集中,男生打分相对分散.
(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:
2人,4人,9人,4人,1人,
打分区间[70,80)的人数最多,有9人,所点频率为: =0.45,
∴最高矩形的高h= =0.045.
(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,
从中抽取3人,基本事件总数n= =20,
有女生被抽中的对立事件是抽中的3名同学都是男生,
∴有女生被抽中的概率p=1﹣ =1﹣ = .
【解析】(Ⅰ)利用茎叶图能求出女生打分的平均分和男生打分的平均分,从茎叶图来看,女生打分相对集中,男生打分相对分散.
(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:2人,4人,9人,4人,1人,打分区间[70,80)的人数最多,有9人,所点频率为0.45,由此能求出最高矩形的高.
(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,有女生被抽中的对立事件是抽中的3名同学都是男生,由此利用对立事件概率计算公式能求出有女生被抽中的概率.
【考点精析】通过灵活运用频率分布直方图和茎叶图,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息;茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少即可以解答此题.