题目内容

【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

【答案】D
【解析】解:∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立, ∴不等式f(x1)﹣f(x2)>f(1)﹣f(0)恒成立,
又∵x1+x2=1,
∴不等式f(x1)﹣f(1﹣x1)>f(1)﹣f(1﹣1)恒成立,
设g(x)=f(x)﹣f(1﹣x),
∵f(x)=ex+mx2﹣m(m>0),
∴g(x)=ex﹣e1x+m(2x﹣1),
则g′(x)=ex+e1x+2m>0,∴g(x)在R上单调递增,
∴不等式g(x1)>g(1)恒成立,
∴x1>1,
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网