题目内容
【题目】在中,角的对边分别为,向量(,
,满足.
(1)求角的大小;
(2)设 , 有最大值为,求的值.
【答案】(1);(2)或.
【解析】试题分析:(1)由条件|可得,,代入得(a﹣c)sinA+(b+c)(sinC﹣sinB)=0,根据正弦定理,可化为a(a﹣c)+(b+c)(c﹣b)=0,结合余弦定理a2+c2﹣b2=2acosB,代入可求角的大小;
(2)先求=﹣+,.结合0<A<,及二次函数的知识求解.
试题解析:
(1)由条件=,两边平方得,又
=(sinA,b+c),=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,即,
又由余弦定理=2acosB,所以cosB=,B=.
(2)m=(sin(C+),),n=(2,kcos2A) (),
=2sin(C+)+cos2A=2sin(C+B)+kcos2A=2ksinA+k-=-k+2sinA+=-+,而0<A<,sinA∈(0,1],
①时,取最大值为.
②时,当时取得最大值,解得
.
③时,开口向上,对称轴小于0当取最大值(舍去),
综上所述,或.
【题目】计划在某水库建一座至多安装 台发电机的水电站,过去 年的水文资料显示,水库年入流量 (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,不足 的年份有 年,不低于 且不超过 的年份有 年,超过 的年份有 年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来 年中,设 表示流量超过 的年数,求 的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量 限制,并有如下关系:
年入流量 | |||
发电机最多可运行台数 | 1 |
若某台发电机运行,则该台年利润为 万元,若某台发电机未运行,则该台年亏损 万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?