题目内容
20.若幂函数$y=({{m^2}-5m+7}){x^{{m^2}-6}}$在(0,+∞)单调递增,则实数m值为( )A. | 3 | B. | 2 | C. | 2或3 | D. | -2或-3 |
分析 根据题意,列出条件式$\left\{\begin{array}{l}{{m}^{2}-5m+7=1}\\{{m}^{2}-6>0}\end{array}\right.$,求出m的值.
解答 解:∵幂函数$y=({{m^2}-5m+7}){x^{{m^2}-6}}$在(0,+∞)单调递增,
∴$\left\{\begin{array}{l}{{m}^{2}-5m+7=1}\\{{m}^{2}-6>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=2或m=3}\\{m<-\sqrt{6}或m>\sqrt{6}}\end{array}\right.$;
∴实数m的值为3.
故选:A.
点评 本题考查了幂函数的定义、图象与性质的应用问题,是基础题目.
练习册系列答案
相关题目
14.过原点作曲线y=lnx的切线,则切线斜率为( )
A. | e2 | B. | $\frac{1}{{e}^{2}}$ | C. | e | D. | $\frac{1}{e}$ |
12.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为60°,$|\overrightarrow{OA}|=|\overrightarrow{OB}|=2$,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,则$|\overrightarrow{OC}|$=( )
A. | $\sqrt{6}$ | B. | $2\sqrt{2}$ | C. | $2\sqrt{5}$ | D. | $2\sqrt{7}$ |
15.为了得到函数y=3cos2x,x∈R的图象,只需要把函数y=3cos(2x+$\frac{π}{5}$),x∈R的图象上所有的点( )
A. | 向左平移$\frac{π}{5}$个单位长度 | B. | 向右平移$\frac{π}{5}$个单位长度 | ||
C. | 向左平移$\frac{π}{10}$个单位长度 | D. | 向右平移$\frac{π}{10}$个单位长度 |
4.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关,说明你的理由;(下面的临界值表供参考)
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关,说明你的理由;(下面的临界值表供参考)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
11.马路上十盏路灯,为了节约用电可以关掉三盏路灯,但两端两盏不能关掉,也不能同时关掉相邻的两盏或三盏,这样的关灯方法有( )
A. | 56种 | B. | 36种 | C. | 20种 | D. | 10种 |
8.在△ABC中,角A,B,C的对边分别为a,b,c,cos2C+2cos(A+B)+$\frac{3}{2}$=0,a+b=5,c=$\sqrt{7}$.
(1)求角C的大小;
(2)求△ABC的面积.
(1)求角C的大小;
(2)求△ABC的面积.
8.设$\overrightarrow{OM}$=(2,1),$\overrightarrow{ON}$=(0,1),O为坐标原点,动点P(x,y)满足0≤$\overrightarrow{OP}$•$\overrightarrow{OM}$≤1,0≤$\overrightarrow{OP}$•$\overrightarrow{ON}$≤1,则x-y的最小值是( )
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |