题目内容
15.为了得到函数y=3cos2x,x∈R的图象,只需要把函数y=3cos(2x+$\frac{π}{5}$),x∈R的图象上所有的点( )A. | 向左平移$\frac{π}{5}$个单位长度 | B. | 向右平移$\frac{π}{5}$个单位长度 | ||
C. | 向左平移$\frac{π}{10}$个单位长度 | D. | 向右平移$\frac{π}{10}$个单位长度 |
分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:把函数y=3cos(2x+$\frac{π}{5}$),x∈R的图象上所有的点向右平移$\frac{π}{10}$个单位长度,
可得y=3cos[2(x-$\frac{π}{10}$)+$\frac{π}{5}$]=3cos2x的图象,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
7.已知a为实数,则|a|≥1是关于x的不等式|x-3|+|x-4|≤a有解的(( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
10.要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )
A. | 5个 | B. | 10个 | C. | 20个 | D. | 45个 |
20.若幂函数$y=({{m^2}-5m+7}){x^{{m^2}-6}}$在(0,+∞)单调递增,则实数m值为( )
A. | 3 | B. | 2 | C. | 2或3 | D. | -2或-3 |
6.某扇形的半径为1cm,它的周长为4cm,那么该扇形的圆心角为( )
A. | 2° | B. | 4 | C. | 4° | D. | 2 |
3.将一枚均匀骰子先后投掷两次,得到的点数分别记为a,b,则直线ax+by+5=0与x2+y2=1相切的概率为( )
A. | $\frac{1}{36}$ | B. | $\frac{1}{18}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{9}$ |
3.一汽车厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
轿车A | 轿车B | 轿车C | |
舒适型 | 100 | 150 | z |
标准型 | 300 | 450 | 600 |
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.