题目内容
【题目】已知△ABC的两条高线所在直线方程为2x-3y+1=0和x+y=0,顶点A(1,2).
求(1)BC边所在的直线方程;
(2)△ABC的面积.
【答案】(1) 2x+3y+7=0;(2).
【解析】
(1)先判断A点不在两条高线上,再利用垂直关系可得AB、AC的方程,进而通过联立可得解;
(2)分别求|BC|及A点到BC边的距离d,利用S△ABC=×d×|BC|即可得解.
(1)∵A点不在两条高线上,由两条直线垂直的条件可设kAB=-,kAC=1.
∴AB、AC边所在的直线方程为3x+2y-7=0,x-y+1=0.
由得B(7,-7).
由得C(-2,-1).
∴BC边所在的直线方程2x+3y+7=0.
(2)∵|BC|=,A点到BC边的距离d=,
∴S△ABC=×d×|BC|=××=.
练习册系列答案
相关题目
【题目】在平面几何中,研究三角形内任意一点与三边的关系时,有真命题:边长为的正三角形内任意一点到各边的距离之和是定值。类比上述命题,请写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出证明。
【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.
(个) | 2 | 3 | 4 | 5 | 6 |
(百万元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?
(参考公式: ,其中)