题目内容

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下:
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

(1)元件A为正品的概率为,元件B为正品的概率为;(2)(i);(ii)的分布列为:


150
90
30






.

解析试题分析:(1)用指标大于或等于82所对应的的元件的个数除以总的元件个数即是正品的概率;(2)(i)先设生产的5件元件中正品件数为,次品件,由题意列出不等式,求解并确定的取值是4或5,然后再由次独立重复试验某事件恰好发生次的概率公式即可得到“生产5件元件B所获得的利润不少于300元”的概率;(ii)根据题意分别求出一件A正品和一件B正品,一件A次品和一件B正品,一件A正品和一件B次品,一件A次品和一件B次品的概率,列出分布列,由公式求出数学期望即可.
试题解析:(1)由题可知元件A为正品的概率为,元件B为正品的概率为
(2)(i)设生产的5件元件中正品件数为,则有次品件,由题意知得到,设“生产5件元件B所获得的利润不少于300元”为事件,则
(ii)随机变量的所有取值为150,90,30,


所以的分布列为:


150
90
30






.
考点:1.次独立重复试验某事件恰好发生次的概率;2.随机变量的分布列;3.数学期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网