题目内容
【题目】已知函数f(x)=lg(2+x)+lg(2﹣x).
(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;
(2)记函数g(x)= +3x,求函数g(x)的值域;
(3)若不等式 f(x)>m有解,求实数m的取值范围.
【答案】(1)见解析;(2)函数g(x)的值域是(﹣6, ];(3)实数m的取值范围为{m|m<lg4}.
【解析】试题分析:(1)利用对数函数的性质能求出函数f(x)=lg(2+x)+lg(2﹣x)的定义域;推导出f(﹣x)=lg(2﹣x)+lg(2+x)=f(x),由此得到f(x)是偶函数. (2)由﹣2<x<2,得f(x)=lg(4﹣x2),从而函数g(x)=﹣x2+3x+4,由此能求出函数g(x)的值域.(3)由不等式f(x)>m有解,得到m<f(x)max,由此能求出实数m的取值范围.
试题解析:
(1)∵函数f(x)=lg(2+x)+lg(2﹣x),
∴,解得﹣2<x<2.
∴函数f(x)的定义域为(﹣2,2).
∵f(﹣x)=lg(2﹣x)+lg(2+x)=f(x),
∴f(x)是偶函数.
(2)∵﹣2<x<2,
∴f(x)=lg(2+x)+lg(2﹣x)=lg(4﹣x2).
∵g(x)=10f(x)+3x,
∴函数g(x)=﹣x2+3x+4=﹣(x﹣)2+,(﹣2<x<2),
∴g(x)max=g()=,g(x)min→g(﹣2)=﹣6,
∴函数g(x)的值域是(﹣6,].
(3)∵不等式f(x)>m有解,∴m<f(x)max,
令t=4﹣x2,由于﹣2<x<2,∴0<t≤4
∴f(x)的最大值为lg4.
∴实数m的取值范围为{m|m<lg4}.
练习册系列答案
相关题目