题目内容
【题目】设α∈(0, ),满足 sinα+cosα= .
(1)求cos(α+ )的值;
(2)求cos(2α+ π)的值.
【答案】
(1)解:∵α∈(0, ),满足 sinα+cosα= =2sin(α+ ),∴sin(α+ )= .
∴cos(α+ )= = .
(2)解:∵cos(2α+ )=2 ﹣1= ,sin(2α+ )=2sin(α+ ) cos(α+ )=2 = ,
∴cos(2α+ π)=cos[(2α+ )+ ]=cos(2α+ )cos ﹣sin(2α+ )sin = ﹣ = .
【解析】(1)利用两角和的正弦公式求得 sin(α+ )的值,再利用同角三角函数的基本关系求得 cos(α+ ) 的值.(2)利用二倍角公式求得 cos(2α+ )的值,可得sin(2α+ )的值,从而求得cos(2α+ π)=cos[(2α+ )+ ]的值.
【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:
健步走步数(前步) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.
【题目】为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:
组序 | 高度区间 | 频数 | 频率 |
1 | [230,235) | 14 | 0.14 |
2 | [235,240) | ① | 0.26 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 30 | ③ |
5 | [250,255) | 10 | ④ |
合计 | 100 | 1.00 |
(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.