题目内容
11.不等式|x|>$\frac{2}{x-1}$的解集为{x|x<0或0<x<1 或x>2}.分析 不等式即$\left\{\begin{array}{l}{x≥0}\\{x>\frac{2}{x-1}}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x<0}\\{-x>\frac{2}{x-1}}\end{array}\right.$②,分别求得①、②的解集,再取并集,即得所求.
解答 解:不等式|x|>$\frac{2}{x-1}$,即$\left\{\begin{array}{l}{x≥0}\\{x>\frac{2}{x-1}}\end{array}\right.$①,或 $\left\{\begin{array}{l}{x<0}\\{-x>\frac{2}{x-1}}\end{array}\right.$②.
由①可得$\left\{\begin{array}{l}{x≥0}\\{\frac{(x+1)(x-2)}{x-1}>0}\end{array}\right.$,求得0<x<1 或x>2.
由②可得 $\left\{\begin{array}{l}{x<0}\\{\frac{{(x-\frac{1}{2})}^{2}+\frac{7}{4}}{x-1}<0}\end{array}\right.$,求得 x<0.
综上可得,原不等式的解集为{x|x<0或0<x<1 或x>2},
故答案为:{x|x<0或0<x<1 或x>2}.
点评 本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目
16.已知A,B,C是△ABC的三内角,且满足2cosBcosC(1-tanBtanC)=1,则角A的大小为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |