题目内容
已知函数.
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
(1);(2)存在,.
解析试题分析:(1)首先根据对数函数的底数 ,得到为减函数,最小值是 ,再根据对数函数的真数大于0,得到 恒成立,在 范围内解不等式即可;(2)先看真数部分是减函数,由已知“在区间上为增函数”可得,为减函数,此时得到;根据“的最大值为1”,结合对数函数的真数大于0,可知,解出,再判断它是不是在的范围内,在这个范围内,那么得到的的值满足题目要求,不在这个范围内就说明满足题目要求的是不存在的.
试题解析:(1)∵,设,
则为减函数,时,t最小值为, 2分
当,恒有意义,即时,恒成立.即;4分
又,∴ 6分
(2)令,则; ∵,∴ 函数为减函数,
又∵在区间上为增函数,∴为减函数,∴,8分
所以时,最小值为,此时最大值为;9分
又的最大值为1,所以, 10分
∴,即, 所以,故这样的实数a存在. 12分
考点:1.对数函数的定义及定义域;2.对数函数的单调性及其应用;3.对数函数的值域与最值;4.简单复合函数的单调性;5.解不等式
练习册系列答案
相关题目