题目内容
【题目】设.
讨论的单调区间;
当时,在上的最小值为,求在上的最大值.
【答案】(Ⅰ)当时,的单调递减区间为;
当时,的单调递减区间为和,
单调递增区间为;
(Ⅱ).
【解析】
试题第一问对函数求导,结合参数的取值范围,确定出导数在相应的区间上的符号,从而确定出单调区间,第二问结合给定的参数的取值范围,确定出函数在那个点处取得最小值,求得参数的值,再求得函数的最大值.
试题解析:(Ⅰ),其
(1)若,即时,恒成立,在上单调递减;
(2)若,即时,令,得两根
,
当或时,单调递减;当时,,单调递增.
综上所述:当时,的单调递减区间为;
当时,的单调递减区间为和,
单调递增区间为;
(Ⅱ)随的变化情况如下表:
单调递减 | 极小值 | 单调递增 | 极大值 | 单调递减 |
当时,有,所以在上的最大值为
又,即.
所以在上的最小值为.
得,从而在上的最大值为.
【题目】2018年8月教育部、国家卫生健康委员会等八个部门联合印发《综合防控儿童青少年近视实话方案》中明确要求,为切实加强新时代儿童青少年近视防控工作,学校应严格组织全体学生每天上、下午各大做1次眼保健操.为了了解学校推广眼保健操是否能有效预防近视,随机从甲学校抽取了50名学生,再从乙学校选出与甲学校被抽取的50名学生视力情况一样的50学生(期中甲学校每天安排学生做眼保健操,乙学校不安排做跟保健操),一段时间后检测他们的视力情况并统计,若视力情况为1.0及以上,则认为该学生视力良好,否则认为该学生的视力一般,表1为甲学校视力情况的频率分布表,表2为乙学校学生视力情况的频率分布表,根据表格回答下列问题:
表1 甲学校学生视力情况的频率分布表
视力情况 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 |
频 数 | 1 | 1 | 15 | 15 | 18 |
表2 乙学校学生视力情况的频率分布表
视力情况 | 0.5 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 |
频 数 | 2 | 2 | 4 | 19 | 13 | 10 |
(1)求在甲学校的50名学生中随机选择1名同学,求其视力情况为良好的概率;
(2)根据表1,表2,对在学校推广眼保健操的必要性进行分析;
(3)在乙学校视力情况一般的学生中选择2人,了解其具体用眼习惯,求这两人视力情况都为0.8的概率.