题目内容
【题目】某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:后得到如下频率分布直方图.
(1)根据频率分布直方图,分别求,众数,中位数。
(2)估计该校高二年级学生期中考试政治成绩的平均分。
(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在分数段抽取的人数是多少?
【答案】(1)众数为75中位数为;(2)平均分为71、(3)11.
【解析】
(1)先根据频率之和为1,可求出;再由频率最大的一组,得到众数;根据中位数两边的频率之和相等,可求出中位数;
(2)由每组的中间值乘以该组的频率,再求和,即可得出平均值;
(3)先由题意确定抽样比,进而可求出在分数段抽取的人数.
解析(1)由题意可得,,解得;
根据频率分布直方图可知:分数段的频率最高,因此众数为75;
又由频率分布直方图可知:分数段的频率为,因为分数段的频率为,所以,中位数为.
(2)由题中数据可得:
该校高二年级学生政治成绩的平均分估计为:
;
(3)因为总体共60名学生,样本容量为20,因此抽样比为;
又在分数段共有人,
因此,在分数段抽取的人数是人.
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件发生的概率为( )
A. B. C. D.