题目内容

【题目】中,角ABC的对边分别为abc,且,则的面积为______

【答案】

【解析】

由正弦定理和三角函数公式化简已知式子可得cosA的值,由余弦定理可求64=(b+c)2﹣bc,求bc,即可得三角形的面积

ABC中btanB+btanA=﹣2ctanB,

由正弦定理可得sinB(tanA+tanB)=﹣2sinCtanB,

∴sinB(tanA+tanB)=﹣2sinC

∴cosB(tanA+tanB)=﹣2sinC,

∴cosB(+)=﹣2sinC,

∴cosB=﹣2sinC,

∴cosB==﹣2sinC,

解得cosA=﹣,A=

∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2﹣bc,

∴bc=9

∴△ABC的面积为=bcsinA==

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网