题目内容
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.
(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的众数,中位数,平均数(同一组中的数据用该区间的中点值代表).
【答案】
(1)解:根据题意得:1.5﹣2t的用户的 =0.4,如图所示:
(2)解:月均用水量的最低标准应定为2.5吨,理由为:
样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,
由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨
(3)解:这100位居民的月均用水量的众数2.25,中位数2,
平均数为0.5×( ×0.10+ ×0.20+ ×0.30+ ×0.40+ ×0.60+ ×0.30+ ×0.10)=1.875
【解析】(1)根据题意确定出1.5﹣2t用户的 ,补全频率分布直方图即可;(2)月均用水量的最低标准应定为2.5吨,理由为:样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,根据样本估计总体作出解释即可;(3)找出居民用水量的众数,中位数,求出平均数即可.
练习册系列答案
相关题目