题目内容

【题目】已知单调递减的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2 , a4是等差中项,则公比q= , 通项公式为an=

【答案】;26n
【解析】解:设单调递减的等比数列{an}的公比为q,
∵a2+a3+a4=28,且a3+2是a2 , a4是等差中项,
=28,2(a3+2)=a2+a4 , 即2(a3+2)= +a3q,
解得a3=8,q= ,(q=2舍去).
∴an= =8× =26n
故答案分别为: ;26n
【考点精析】根据题目的已知条件,利用等比数列的通项公式(及其变式)和等比数列的前n项和公式的相关知识可以得到问题的答案,需要掌握通项公式:;前项和公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网