题目内容
已知函数
(
)
(1)求f(x)的单调区间;
(2)证明:lnx<![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020844270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020797608.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020813254.gif)
(1)求f(x)的单调区间;
(2)证明:lnx<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020844270.gif)
(1)当
时,
>0,f(x)在
上递增;当
时,在
上
<0,f(x)递减;在
上,
>0,f(x)递增.(2)证明略
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020860252.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020891410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020906250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020922639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020969654.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
(1)函数f(x)的定义域为
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231230210311021.gif)
①当
时,
>0,f(x)在
上递增
②当
时,令
得
解得:
,因
(舍去),故在
上
<0,f(x)递减;在
上,
>0,f(x)递增.
(2)由(1)知
在
内递减,在
内递增.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231230216551051.gif)
故
,又因![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021749403.gif)
故
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021780367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020891410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231230210311021.gif)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020860252.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020891410.gif)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020906250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021250367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021265519.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021312856.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021343264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020922639.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020969654.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123020875281.gif)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021608472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021624381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021640520.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231230216551051.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021671813.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021749403.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021764979.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123021780367.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目