题目内容
【题目】如图,在长方形ABCD中,AB= ,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )
A.
B.
C.
D.
【答案】D
【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K为垂足,由翻折的特征知,连接D'K,
则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是 ,
如图当E与C重合时,AK= = ,
取O为AD′的中点,得到△OAK是正三角形.
故∠K0A= ,∴∠K0D'= ,
其所对的弧长为 = ,
故选:D.
根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K,则D'KA=90°,得到K点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.
练习册系列答案
相关题目