题目内容
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M。
(1)求椭圆C的方程;
(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。
(1)求椭圆C的方程;
(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。
(1)(2)存在,
试题分析:(1)用椭圆的定义可求,根据焦距和可求;也可将点代入设出的椭圆方程解方程组求。(2)用点差法求直线的斜率,设与直线平行且与椭圆相切的直线方程为,直线与椭圆的焦点即为所求点。
试题解析:(1)(方法一)依题意,设椭圆方程为, 1分
则, 2分
因为椭圆两个焦点为,所以
="4" 4分
5分
椭圆的方程为 6分
(方法二)依题意,设椭圆方程为, 1分
则,即,解之得 5分
椭圆C的方程为 6分
(2)如图
(方法一)设两点的坐标分别为,
则 7分
① ②
①-②,得,
9分
设与直线平行且与椭圆相切的直线方程为
联立方程组,消去整理得
由判别式得 12分
由图知,当时,与椭圆的切点为,此时
的面积最大
所以点的坐标为 14分
(方法二)设直线的方程为,联立方程组,
消去整理得
设两点的坐标分别为,则
所以直线AB的方程为,即 9分(以下同法一)
练习册系列答案
相关题目