题目内容
【题目】下列四种说法中:
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②相等的线段在直观图中仍然相等
③一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥
④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台正确的个数是( )
A.0B.1C.2D.3
【答案】A
【解析】
根据棱柱、棱台、圆锥以及直观图的概念,逐项判断即可得解.
对于①,有两个面平行,其余各面都是四边形,且相邻两个四边形的公共边都互相平行,这些面围成的几何体叫棱柱;如图,该几何体满足①中条件,却不是棱柱;故①错误;
对于②,相等的线段在直观图中不一定相等,例如正方形在直观图中是邻边不等的平行四边形,故②错误;
对于③,一个直角三角形绕其一直角边旋转一周所形成的封闭图形叫圆锥,故③错误;
对于④,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故④错误.
故选:A.
【题目】已知函数.
()当时,求此函数对应的曲线在处的切线方程.
()求函数的单调区间.
()对,不等式恒成立,求的取值范围.
【答案】();()见解析;()当时, ,当时
【解析】试题分析:(1)利用导数的意义,求得切线方程为;(2)求导得,通过, , 分类讨论,得到单调区间;(3)分离参数法,得到,通过求导,得, .
试题解析:
()当时, ,
∴, ,
,∴切线方程.
()
.
令,则或,
当时, 在, 上为增函数.
在上为减函数,
当时, 在上为增函数,
当时, 在, 上为单调递增,
在上单调递减.
()当时, ,
当时,由得
,对恒成立.
设,则
,
令得或,
极小 |
,∴, .
点睛:本题考查导数在函数综合题型中的应用。含参的函数单调性讨论,考查学生的分类讨论能力,本题中,结合导函数的形式,分类讨论;含参的恒成立问题,一般采取分离参数法,解决恒成立。
【题型】解答题
【结束】
20
【题目】已知集合,集合且满足:
, , 与恰有一个成立.对于定义 .
()若, , , ,求的值及的最大值.
()取, , , 中任意删去两个数,即剩下的个数的和为,求证: .
()对于满足的每一个集合,集合中是否都存在三个不同的元素, , ,使得恒成立,并说明理由.